
WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.10 Preprocessing directives
Syntax

1 preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

§6.10 Language 145

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt)

replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...)

replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

2 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the
following constraints: The first token in the sequence is a # preprocessing token that (at
the start of translation phase 4) is either the first character in the source file (optionally
after white space containing no new-line characters) or that follows white space
containing at least one new-line character. The last token in the sequence is the first new-
line character that follows the first token in the sequence.143) A new-line character ends
the preprocessing directive even if it occurs within what would otherwise be an

143) Thus, preprocessing directives are commonly called ‘‘lines’’. These ‘‘lines’’ hav e no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

146 Language §6.10

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

invocation of a function-like macro.

3 A text line shall not begin with a # preprocessing token. A non-directive shall not begin
with any of the directive names appearing in the syntax.

4 When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any
sequence of preprocessing tokens to occur between the directive name and the following
new-line character.

Constraints

5 The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through
just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in
translation phase 3).

Semantics

6 The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are called preprocessing,
because conceptually they occur before translation of the resulting translation unit.

7 The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

8 EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not
begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been
replaced.

6.10.1 Conditional inclusion
Constraints

1 The expression that controls conditional inclusion shall be an integer constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to
keywords) are interpreted as described below;144) and it may contain unary operator
expressions of the form

144) Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

§6.10.1 Language 147

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

defined identifier
or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier), 0 if it is not.

2 Each preprocessing token that remains (in the list of preprocessing tokens that will
become the controlling expression) after all macro replacements have occurred shall be in
the lexical form of a token (6.4).

Semantics

3 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defined unary operator), just as in normal text. If the token defined is
generated as a result of this replacement process or use of the defined unary operator
does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion and the defined unary
operator have been performed, all remaining identifiers (including those lexically
identical to keywords) are replaced with the pp-number 0, and then each preprocessing
token is converted into a token. The resulting tokens compose the controlling constant
expression which is evaluated according to the rules of 6.6. For the purposes of this
token conversion and evaluation, all signed integer types and all unsigned integer types
act as if they hav e the same representation as, respectively, the types intmax_t and
uintmax_t defined in the header <stdint.h>.145) This includes interpreting
character constants, which may involve converting escape sequences into execution
character set members. Whether the numeric value for these character constants matches
the value obtained when an identical character constant occurs in an expression (other
than within a #if or #elif directive) is implementation-defined.146) Also, whether a
single-character character constant may have a neg ative value is implementation-defined.

5 Preprocessing directives of the forms

145) Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is 0xFFFF, the constant
0x8000 is signed and positive within a #if expression even though it would be unsigned in
translation phase 7.

148 Language §6.10.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent to #if defined identifier and #if !defined identifier
respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive, all the groups
until the #endif are skipped.147)

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.18.1.5).

6.10.2 Source file inclusion
Constraints

1 A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics

2 A preprocessing directive of the form

include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between the < and > delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

3 A preprocessing directive of the form

146) Thus, the constant expression in the following #if directive and if statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z' - 'a' == 25

if ('z' - 'a' == 25)

147) As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive
before the terminating new-line character. Howev er, comments may appear anywhere in a source file,
including within a preprocessing directive.

§6.10.2 Language 149

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

include "q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between the " delimiters. The named source file is searched
for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

include <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original
directive.

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after include in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous forms.148) The method by which a sequence of preprocessing tokens
between a < and a > preprocessing token pair or a pair of " characters is combined into a
single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or
more nondigits or digits (6.4.2.1) followed by a period (.) and a single nondigit. The
first character shall not be a digit. The implementation may ignore distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

6 A #include preprocessing directive may appear in a source file that has been read
because of a #include directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

7 EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 EXAMPLE 2 This illustrates macro-replaced #include directives:

148) Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

150 Language §6.10.2

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement
Constraints

1 Tw o replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

2 An identifier currently defined as an object-like macro shall not be redefined by another
#define preprocessing directive unless the second definition is an object-like macro
definition and the two replacement lists are identical. Likewise, an identifier currently
defined as a function-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are
identical.

3 There shall be white-space between the identifier and the replacement list in the definition
of an object-like macro.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments (including those arguments consisting of no preprocessing tokens) in an
invocation of a function-like macro shall equal the number of parameters in the macro
definition. Otherwise, there shall be more arguments in the invocation than there are
parameters in the macro definition (excluding the ...). There shall exist a)
preprocessing token that terminates the invocation.

5 The identifier __VA_ARGS_ _ shall occur only in the replacement-list of a function-like
macro that uses the ellipsis notation in the parameters.

6 A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

7 The identifier immediately following the define is called the macro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

§6.10.3 Language 151

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name149)

to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive. The replacement list is then rescanned for more macro names
as specified below.

10 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a
function call. The parameters are specified by the optional list of identifiers, whose scope
extends from their declaration in the identifier list until the new-line character that
terminates the #define preprocessing directive. Each subsequent instance of the
function-like macro name followed by a (as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition
(an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of
left and right parenthesis preprocessing tokens. Within the sequence of preprocessing
tokens making up an invocation of a function-like macro, new-line is considered a normal
white-space character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives,150) the behavior is undefined.

12 If there is a ... in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:
the variable arguments. The number of arguments so combined is such that, following

149) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they
are never scanned for macro names or parameters.

150) Despite the name, a non-directive is a preprocessing directive.

152 Language §6.10.3

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the ...).

6.10.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a # or ## preprocessing token or followed by a ## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

2 An identifier __VA_ARGS_ _ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3.2 The # operator

Constraints

1 Each # preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

2 If, in the replacement list, a parameter is immediately preceded by a # preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants: a \ character is inserted before each "
and \ character of a character constant or string literal (including the delimiting "
characters), except that it is implementation-defined whether a \ character is inserted
before the \ character beginning a universal character name. If the replacement that
results is not a valid character string literal, the behavior is undefined. The character
string literal corresponding to an empty argument is "". The order of evaluation of # and
operators is unspecified.

§6.10.3.2 Language 153

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.10.3.3 The ## operator

Constraints

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

2 If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a ## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocessing tokens, the parameter is replaced by a placemarker preprocessing token
instead.151)

3 For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non-placemarker preprocessing token results in the non-placemarker preprocessing token.
If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of ## operators
is unspecified.

4 EXAMPLE In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)

in_between(x hash_hash y)

in_between(x ## y)

mkstr(x ## y)

"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not the ## operator.

151) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

154 Language §6.10.3.3

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.10.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted and # and ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the
resulting preprocessing token sequence is rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file’s preprocessing tokens), it is not replaced.
Furthermore, if any nested replacements encounter the name of the macro being replaced,
it is not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding #undef
directive is encountered or (if none is encountered) until the end of the preprocessing
translation unit. Macro definitions have no significance after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.

3 EXAMPLE 1 The simplest use of this facility is to define a ‘‘manifest constant’’, as in

#define TABSIZE 100

int table[TABSIZE];

4 EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.
It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its
arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

§6.10.3.5 Language 155

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

156 Language §6.10.3.5

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs(

"strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs(

"strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

7 EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

8 EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

9 EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, __VA_ARGS_ _)
#define showlist(...) puts(#_ _VA_ARGS_ _)
#define report(test, ...) ((test)?puts(#test):\

printf(_ _VA_ARGS_ _))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

§6.10.3.5 Language 157

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", x, y));

6.10.4 Line control
Constraints

1 The string literal of a #line directive, if present, shall be a character string literal.

Semantics

2 The line number of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than
2147483647.

4 A preprocessing directive of the form

line digit-sequence "s-char-sequenceopt" new-line

sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after line on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

158 Language §6.10.4

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.10.5 Error directive
Semantics

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragma directive
Semantics

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

where the preprocessing token STDC does not immediately follow pragma in the
directive (prior to any macro replacement)152) causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation to fail or cause the
translator or the resulting program to behave in a non-conforming manner. Any such
pragma that is not recognized by the implementation is ignored.

2 If the preprocessing token STDC does immediately follow pragma in the directive (prior
to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following forms153) whose meanings are described
elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the CX_LIMITED_RANGE pragma (7.3.4).

152) An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (where STDC immediately follows pragma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.

153) See ‘‘future language directions’’ (6.11.8).

§6.10.6 Language 159

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.10.7 Null directive
Semantics

1 A preprocessing directive of the form

new-line

has no effect.

6.10.8 Predefined macro names

1 The following macro names154) shall be defined by the implementation:

__DATE_ _ The date of translation of the preprocessing translation unit: a character
string literal of the form "Mmm dd yyyy", where the names of the
months are the same as those generated by the asctime function, and the
first character of dd is a space character if the value is less than 10. If the
date of translation is not available, an implementation-defined valid date
shall be supplied.

__FILE_ _ The presumed name of the current source file (a character string literal).155)

__LINE_ _ The presumed line number (within the current source file) of the current
source line (an integer constant).155)

__STDC_ _ The integer constant 1, intended to indicate a conforming implementation.

__STDC_HOSTED_ _ The integer constant 1 if the implementation is a hosted
implementation or the integer constant 0 if it is not.

__STDC_MB_MIGHT_NEQ_WC_ _ The integer constant 1, intended to indicate that, in
the encoding for wchar_t, a member of the basic character set need not
have a code value equal to its value when used as the lone character in an
integer character constant.

__STDC_VERSION_ _ The integer constant 199901L.156)

__TIME_ _ The time of translation of the preprocessing translation unit: a character
string literal of the form "hh:mm:ss" as in the time generated by the
asctime function. If the time of translation is not available, an
implementation-defined valid time shall be supplied.

154) See ‘‘future language directions’’ (6.11.9).

155) The presumed source file name and line number can be changed by the #line directive.

156) This macro was not specified in ISO/IEC 9899:1990 and was specified as 199409L in
ISO/IEC 9899/AMD1:1995. The intention is that this will remain an integer constant of type long
int that is increased with each revision of this International Standard.

160 Language §6.10.8

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

2 The following macro names are conditionally defined by the implementation:

__STDC_IEC_559_ _ The integer constant 1, intended to indicate conformance to the
specifications in annex F (IEC 60559 floating-point arithmetic).

__STDC_IEC_559_COMPLEX_ _ The integer constant 1, intended to indicate
adherence to the specifications in informative annex G (IEC 60559
compatible complex arithmetic).

__STDC_ISO_10646_ _ An integer constant of the form yyyymmL (for example,
199712L). If this symbol is defined, then every character in the Unicode
required set, when stored in an object of type wchar_t, has the same
value as the short identifier of that character. The Unicode required set
consists of all the characters that are defined by ISO/IEC 10646, along with
all amendments and technical corrigenda, as of the specified year and
month.

3 The values of the predefined macros (except for __FILE_ _ and __LINE_ _) remain
constant throughout the translation unit.

4 None of these macro names, nor the identifier defined, shall be the subject of a
#define or a #undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

5 The implementation shall not predefine the macro __cplusplus, nor shall it define it
in any standard header.

Forward references: the asctime function (7.23.3.1), standard headers (7.1.2).

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:

_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting the L prefix, if
present, deleting the leading and trailing double-quotes, replacing each escape sequence
\" by a double-quote, and replacing each escape sequence \\ by a single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they were the pp-tokens in a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

§6.10.9 Language 161

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

162 Language §6.10.9

